LA-5760
UC-32

c 3 Reporting Date: October 1974
> o Issued: December 1974

Modified Ditference Schemes for the

Transport Equation Solution

by

Bengt G. Carlson

Il

|

|

il

Il

LOS ALAMOS mlmlmu LABORATORY
3 9338 00310 6183
Patinn. N

i

loss/\valamos
scientific laboratory

of the University of California
LOS ALAMOS, NEW MEXICO 87544

UNITED STATES
ATOMIC ENERGY COMMISSION
CONTRACT W-7403-ENG. 36


ABOUT THIS REPORT
This official electronic version was created by scanning the best available paper or microfiche copy of the 
original report at a 300 dpi resolution.  Original 
color illustrations appear as black and white images.

For additional information or comments, contact: 
Library Without Walls Project 
Los Alamos National Laboratory Research Library
Los Alamos, NM 87544 
Phone: (505)667-4448 
E-mail: lwwp@lanl.gov



Printed in the United States of America. Available from
National Technical Information Service
U.S. Department of Commerce
5285 Port Royal Road
Springtield, VA 22151
Price: Printed Copy $4.00 Microfiche $2.25

'l'hhnpod prepared as ca accoual ol wotk sponsored by the United
Stctes Government Nm&nlhu nited Sicles aocr the Usited Sirtes
AlomlclluwyColnm-on wnydedonu.mulyd!hw

mwmﬂh&ummu,hd%amﬂwhbox

p(dmuproa-d-:k-d unp«mntﬁdnhmmldwuhw
peivolely owned nghts




MODIFIED DIFFERENCE SCHEMES FOR THE TRANSPORT EQUATION SOLUTION
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[ B ' e i”Bengt G. Carlson

ABSTRACT

This report presents an improved set of numerical methods
for solving the neutron transport equation in one or several
The revised methods, like earlier S, -type methods,

are based on the multigroup, discrete ordinates reduction of
_ . the equation and on simple difference methods with certain
iterative techniques for obtaining solutions.
-get provides reasonable remedies for most of the problems en-

The improved

countered in using codes based on earlier methods, such as
oscillating fluxes and ray-effect distortions.

I. INTRODUCTION

This report presents an improved set of methods
for solving the neutron transport equation numeri-
cally in one or more dimensions. The changes from
earlier methods, although not major, have some over-
all beneficial effects on consistency, accuracy,
and generality of procedures and results. The main
effects are that smoother solutions are found, ac-
curacy is enhanced in other ways, and time per cal-
culated solution is reduced.

In expectation of smoother, more realistic flux
solutions, the count of mesh divisions may be re-
duced and fewer iterative cycles will complete the
calculation. This is partially offset by the fact
that some of the newer, more elaborate methods re-
quire more calculating time per mesh cell. However,
the more elaborate methods are used only when really
needed and are activated only for a small fraction
of the mesh cells. This fraction depends on cell
size and location as well as on particle direction
and speed.

The revised methods, like their forerunners,
are based on the multigroup, discrete ordinates
simplification of the transport equation and on the
diamond difference scheme coupled with iterative

procedures to effect the numerical solutioms. The

methods involve, among many other aids, a pseudochar-
acteristic approach to the equations which also may
be developed as an independent, distinct approach to
solving the discrete ordinates equations.

The diamond differenée relations entail the
usual S, assumption of representing the detailed
neutron flux by connected straight line segments.

By using this scheme, the solution is generated
(usually in a prescribed sequence) mesh cell by mesh
cell for each discrete direction in each neutron
velocity group. This process assumes a given source
distribution at the beginning and a recalculation at
the end, thus setting up an iterative cycle.

Assuming that the cells have regular shapes,
with d dimensions and 2d sides, the calculations
first involve the determination of the mid-cell flux
and then d extrapolations across the cell. The lat-
ter, based on the d input fluxes and the mid-cell
flux, determine the output fluxes. Generally, the
extrapolations span time, position with up to three
variables, and direction with up to two independent
components. In the rectangular geometries, extra-
polation in the directional, or angular, variables
is not necessary. In the simple curved (r) spheri-
cal and (r,z) and (r,8) cylindrical geometries, only

one extrapolation in angle is needed.



The main difficulty with the discrete ordinates,:
diamond difference approach is the occasional de-
velopment of oscillations in the calculated flux
These

are the problems of fluctuations at angles to the

and of two other types of flux distortions.

main stream, called flux skewing, and of irregular
variation of £lux known as ray effects.

Flux seesaw evolves because some cell dimensions
are too large and because the extrapolations of the
unmodified diamond scheme are very stiff. Here the
optical dimensions, which depend on the physical in-
teraction cross sections as well as on the cell di-
mensions, are involved. The obvious solution for
flux seesaw (increasing the number of cells) is not
alwvays effective, seldom desirable, and probably not
possible in practice because of computer time and
gtorage limitations.

Flux skewing develops from extrapolations piv-
oting about a single mid-cell value of the flux.

The flux may be quite smooth in the main flow direc-
tion but may, for physical or mathematical reasons,
generate fluctuations in one or several of the co-
ordinate directions.

The occurrence of ray effects is associated
with the discrete ordinates assumption. In that
simplification, isotropic sources are replaced by
anigotropic, spoke-like sources emitting neutrons
only in specified, usually sparse discrete direc-
tions. Therefore, in the presence of isolated or
otherwise unevenly distributed sources and in the
absence of sufficient natural smoothing by scatter-~
ing, the calculated flux distributions may show
serious distortions unexplainable by the physics of
the problem. These distortions are extraneous ef-
fects, mainly telltale imprints of the discrete
nature of the angular representation.

Oscillations are readily mitigated or elimi-
nated by simple physical arguments that produce ap-
proximate lower and upper bounds for the extrapo-
lated fluxes in any given cell. Therefore, the
fluxes are first restrained to be positive by very
simple means. The main test can be applied to a
single, combined extrapolation. If that result goes
beyond limits, the straight diamond scheme is re-
placed by an alternate scheme. Three pogsibilities
are discussed: the '"sloping step" schemes that, with
slight sacrifice in continuity and differential ac-

curacy, can adjust to specified physical limits.

Such difference schemes, which permit flux discon-
tinuities at the input sides of the cell, are much
less stiff than the diamond scheme. The diligent
use of one of these schemes reduces or prevents the
development and propagation of flux oscillations as
well as flux skewing. In the latter case, smoothing
the outputs can be done in an explicit manner so

that the total outflow is conserved.

A possible remedy for ray effects is to increase
the number of rays, that is, the order n of the an-
gular representation. This solution 18 not very at-
tractive because it requires a too large nj there-
fore too much computing time. Two other, more ef-
fective methods are discussed. The first is a very
simple remedy based on a particular difference scheme
that equates the detailed outflows from a cell to
the average outflow. This has a certain consistency
with the discrete ordinates assumption, readily
solves the equation in the presence of many varia-
bles, and smoothes out ray effects in an acceptable
manner. This method has the general features of a
numerical method of characteristics.

The second method is based on smoothing out the
input fluxes before doing the regular calculations
for a mesh cell. Here the smoothing is done so that
the total inflow is conserved. The degree of smooth~
ing depends on the shape of the cell, but depends
more strongly on the angular spread associated with
each discrete ray.

Several other difficulties with S, calculations
are discussed in this report, a few are resolved
Difficulties

include getting good accuracy near the origiﬁ in

fully, others are resolved partially.

spherical geometry, achieving consistency between
spherical and cylindrical geometry, practical han-
dling of irregular geometries, and constructing
satisfactory two-dimensional quadrature.

Section II discusses plane geometry, modified
difference schemes, physical limits, effective op-~
tical thickness, and related matters. Section III
takes up spherical geometry, the use of combined
fluxes, the reduction of two or more dimensions to
one, and the correction of the equation for better
definition near the origin. Section IV is concerned
with cylindrical geometry, its consistency to spher-
ical geometry, the accuracy of two-dimensional
quadrature, and the construction of the ESn quadra-

ture sets. Section V discusses (x,y), (x,y,z), and




(x,y,t) geometry in a general way, alternate differ-
ence schemes, two methods for smoothing out ray ef- .
fects, and, finally, a method for handling split
(x,y) cells. Numerical comparisons of methods, and
the pseudocharacteristic method as an independent
method, will be discussed in future reports.
References 1, 2, and 3 present a general dis-
cussion of the discrete ordinates, diamond)diffetence

approach.

II. ONE-DIMENSIONAL PLANE GEOMETRY
The transport difference equation for infinite
plane (x,u) geometry is given by

- = A

u(Nh_H2 Nh—&) + OAN S, (1)
where all quantities except the output flux Nh+8 and
the mid-cell flux N are assumed to be known. Here

x denotes position and M directiom, - 1 < u < 1. It
ig also assumed that A = Ax > 0, that 0 2 0, and

that u is discrete valued, u # 0. If u is negative,
then Nh—&’ rather than Nh+k
The cell boundary fluxes N

, is taken as the un-

known output. and

)
Nh+% may be identified with N(xo) and N(x?,ﬂrespect-
tively, where N(x) = N(x° + A).

Equation (1) is solved by introducing an auxil-
iary relation, which defines a difference scheme, in
this case a modified diamond difference (MDS) scheme.

The auxiliary relation is

Ny, = L +PIN-2 Ny (2)
which may also be written as
Nh+¥ - Nh-% = (1 + P)(N - Nh—%) R (3)
or
1 P _
T+7 Yt T TP Moy *

Here P is a parameter, 0 < P < 1, with P = 1 in the
normal case and is to be determined in other cases.
Clearly, the weight multiplying the output flux is
greater than or equal to the weight multiplying the
input. Equations (3) and (4) with P = 1 correspond
to the assumption that N is linear in x in the in-

terval (xo, x_+ A). Reference 4 discusses other

o
possibilities.

The result of substituting Eq. (3) into Eq. (1)
and solving for N is

QL+ BN, , +uS/o

N T3P +u (%)

and also

1}

Ny = (1 + BN - PN,

A +P-uR)N , + 1+ P)u S/o

T T+P+u » (©

where u, the apparent optical thickness, is defined
by

u = b/ - %)

If 0 = 0 in Eqs. (5) and (6), then the following re-

placement is made.
u S/o » AS/|u| . 8)

In the preliminary calculation, which in most
cases is also the final one, P is set to unity so
that

N, +us/o

N = 2 + u ’ (9)

with the following extrapolation.

Mgt = 20 = Ny

(2 - WN_ + 2u S/o

= 24+ u ) (10)

The analytical form of Eq. (1) is a simple dif-

ferential equation.

3N _
waet oN = §, (11
which is solved by
N(x) = N(xo) E(x) + [1 - E(x)] S/a, (12)

where

E(x) = exp[- olx - x }/{ul] . (13)



With x = x + A, Eq. (12) becomes
N(x) = N(xo) exp(-u) + [1 -~ exp(-u)] S/o. (14)

By averaging the terms in Eq. (12) over the x inter-
val (xo, %, + A), the analytical form for the mid-
cell flux is obtained.

N=N o (-eD/u+ [1- Q- e/ s/
(15)

Adopting the same notation for Eq. (14), that equa-

tion becomes
N = N e + (1 - s/ 16
! et e ) C. (16)

The above equations show that N and Nh+¥ are

weighted averages of Nh_li and S/0 and that the
weights represent penetration probabilities which

by nature are positive and sum to unity. Also note

that N and Nh+12 are limited by S/0 as u increases.
For decaying flux, that is, for

/o <Ny > a7

S/o is a lower limit and

S/0 <Ny <N <N 18)

and for growing flux,

s/g 2 Ny, 19)
S/g 1is an upper limit and

s/g 2 N

g 2N 2N, (20)

By equating coefficients between Eq. (6) and
Eq. (16), the exact 1 + P is determined.

1+P=ul-eN/u=-1+e". (21)

Examination of this expression readily shows that

1 + P is monotonely decreasing, and that

1+ P(0) = 2, 14+ P(®) =1, (22)

and, for u << 1,

1+4+P=zu/(u-1). (23)
The approximate coefficients of Nh_;i and S/0 in Egs.
(5) and (6) show the same properties as the exact
coefficients in Eqs. (15) and (16) with the notable
exception that the probability multiplier of Nh—k in
Eq. (10) can become negative if

u> 2, (24)

or, as in Eq. (6) for P # 1, 1if

u > (1 + P)/P. (25)

Therefore, extrapolation can lead to violation of
the physics of the problem, more specifically of the
inequalities in Eqs. (18) and (20). In extreme cases,
some remedy in the form of a departure from the nor-
mal case of P = 1 will become necessary.

‘It will be convenient later in this section to
have available the following approximation to 1 + P.

1+P=2, 0<usu,

1+P = (u-~ u, + 2)/(u - u, + 1), u> us (26)
where u  can be chosen subject to 0 £ u, S 2. Here,
1+ P(uo) = 2 go that the approximation is continu-
ous. Also, Eq. (23) holds for u >> u. Substituting
Eq. (26) into Eq. (21) and solving for the exponen-
tial, one finds

et = (2-uw/(2+uw,0s5usu,

e = (2~ u /(2 - u) +u) + w?], u > u.
(27)

For u, = 1, the second of these equations becomes

eV« 1/(L+ u+ud), u> l. (28)

Before discussing the above approximations further,
three special MDS schemes will be described: two
that are regarded as extremes and one for the many
possible compromises.

In the first MDS scheme (Source Limit) one
selects the following for 1 + P.




l1+P=2,08usg2,
1+P=u/(u-1), h>2, (29)

that is, Eq. (26) with u, = 2, which guarantees a
limited and nonnegative Nh+k' In the straight dia--
mond case of u £ 2 in this scheme, N and Nh&% are
obtained from Eqs. (9) and (10), otherwise from

N=N fu+ Q- 1/u) s/a, (30)

which derives from Eq. (1) on the basis of

Nh+% = S/g. (31)

In practice, these equations are use@ if Nh+% from
Eq. (10) goes below S/0 in the decay case or goes
Therefore, Eq. (29)
is not needed, and Eqs. (5) and (6) are not used.

above. S/0 in the growth case.

In the second MDS scheme (Zero Limit or Zero
A zero limit
is used for decaying flux, and a 2S/0 limit is used

Fix-Up) more relaxed limits are used.

for growing flux. The latter limit is based on a
minimum Nh-% of zero and a maximum N of S/0, giving

a maximum extrapolation to 2S8/0. Recalculation of

N gives

N =N _/u+s/o, 32)
when

Nh+k =0, (33)
and

N = Nh_%/u + (1 - 2/u) 8/o, (36)
when

Ny, = 28/o (35)

in the two cases.

for 1 + P is needed and Eqs. (5) and (6) are not

Again, in practice, no formula

used.

It is not generally advisable to use the exact
1 + P given by Eq. (21) in a MDS difference scheme
because, first, it applies only to infinite plane
geometry and, second, it is based on the assumption

that S is independent of N and constant over the

cell. In most practical situations, S depends on N
through the scattering process or some other process,
and 1f the dependence is strong, which it often is,

S tends to vary like the flux across the cell. In
this and similar situations there may be consider-
able cancellation between the CAN and AS terms in
Eq. (1) so that u is only the apparent thickness,
not the effective thickness of the cell which may
be much smaller.

Experience indicates that Ax should be chosen
so that the effective optical thickness u' of the
cell is less than unity at least for cells in the
more important subregions of the total mesh. Also,
to promote accuracy of the calculated fluxes and of
various related functionals that may be of interest
(to maintain second-order error terms), it is appar-
ently necessary to keep 1 + P = 2 for all cells which
are effectively small, say for x intervals with
u' < 1.
A suitable formula for u' will be developed below.

Equation (26) allows for other possibilities.
Here it is noted that u' may be written
u' = o' |ul, (36)

where o' denotes the effective total cross section
in units of inverse length.

The third MDS scheme examined here (Reduced
Source Limit), which seems to be a good and practical
compromise between the first two schemes, is based

on the following for 1 + P in the decay case.
1+P=2,0g5u" <1,
1+P=("+1/u',u >1, 37)

which is the same as Eq. (26) with u replaced by u'
and “é = 1. As shown later, this scheme implies a
lower limit of %S/0. Therefore in the growth case,
a limit of %S/O suggests itself. Recalculation in

the growth case gives
N=N _Ju+ Q- 3/20)8/0 (38)
based on Eq. (1) and

N, = 35/0. (39)



In the decay case, if u' > 1, recalculation is based

on Eq. (37) in conjunction with Eqs. (5) and (6).
The effective optical thickness u' is defined

here and is computed by setting uS/c = 0 in Eq. (9)

and solving for u. The result denoted by u' is

u' = 2(N,, - N')/N' = uN' - 8/0)/N', (40)

where N' denotes the value of N obtained from Eq.
(9) with no change. This reduced u (u') is in
esgence the answer to the question: What value
should be given to u to account for N = N' in the
absence of sources? Clearly, from the definition

one has
0<u'gu, (41)

with u' = u 1{f § = Q.
culated if u < 1.

Therefore u' need not be cal-
As can be shown, u' as defined
by Eq. (40) tends to be an overestimate of the ef-
fective thickness.

‘Table I gives some comparisons of P by approx-
imations to the "exact" P from Eq. (21).

TABLE I
P FROM FORMULA AS GIVEN

Eq. (26) Eq. (26) Eq. (21)
=1

u_ Eq. (23) Yo ™ 4 Yo Exact
1.0 - 0.6667 1.0000 0.7183
1.5 - ! 0.5000 0.6667 0.6115
2.0 1.0000 0.4000 0.5000 0.5232
2.5 0.6667 0.3333 0.4000 0.4505
3.0 0.5000 0.2857 0.3333 0.3907
4.0 0.3333 0.2222 0.2500 0.3010
5.0 0.2500 0.1818 0.2000 0.2395

The third MDS scheme guarantees that N is

hils
positive for large u and u' and implies a number of

other properties. To establish a few of these, the

following relations are helpful.

(u - u')N' = uS/0o, (42)

which is implied b; Eq. (40), and
Nh—k = (1 + du)N' - uS/o = (1 + Jqu')N', (43)

which follows from Eq. (9) and is simplified by Eq.

(42). A corollary of this is that, for u' = 1,
N = 2y (44)
37h-k? ’
and
Mgy = N = (45)

Next, Eq. (6) is rewritten, adding and subtract-

ing terms, as follows.
Ny = [PNh_;i + (1 - Pu)N . - Plu- “')Nh—&
+ (1L +P) us/c)/(L + P + u), (46)
which, after applying Eqs. (42) and (43), becoumes
Mgy = [Py + (1 = PuIN
+ u(l - ¥Pu')s/o}/ (L + P+ u), (47
or, assuming that u' < 1 go that P = 1,

=[(2=-u")N , + u(l - }u')s/c]/(2 + u).

(48)

Nt hels

Here, with Nh—% > §/0 and u' £ 1, it is clear that

N exceeds %S/o.
If, on the other hand, u' > 1, P is set to 1/u’

With this substitution

hls

in accordance with Eq. (37).
in Eq. (47), one finds

Nh+k = (Nh—% + 3u'u S/0)/ (1L + u' + u'u), (49)

which is clearly limited and positive, since on the
basis of Eq. (43) and N' > S/o,

Nh+% > [(1 + du" + du'u) S/01/(1 + u' + u'u)
> 4s/o. (50)

ITII. SPHERICAL GEOMETRY
The difference equation for spherical (r,u)
geometry is given by

HA N g, ~ MAN

+ (C/w)(am+%N - am-%“m—k)

+ OVN = VS, (51)




where

A, = 4w, (52)

C=An = Ay (53)

v, = G- ), (54)
and

s = Opa = T WM (55)

with ak = 0 and w denoting the weight associated
with the directdion u.

Here, as in Sec. II, the convenient convention
of omitting central subscripts is followed. There-

fore, w = wm, = um, g = oi, S =28 N

17 Vi T Mo g

A'Nm-% = Nm—%,i’ N = Nmi’ etc. Note that infinite
slab geometry is the special case of Eq. (5) with
A =1, hence C £ 0, and V = A,

used, the following is assumed.

For the quadrature

Emwm =1, memum =0, (56)
and

L wyu 2a 1/3 57

m mm ‘ (57

In Eq. (56), the second sum should be taken as a
consequence of a stronger condition, that of sym-
metric quadrature. This assumes that if um with
weight L is in the quadrature set, so is -um with
the same weight. Symmetry here is a customary but
not a required condition.

Equation (51) 1is solved by the methods given
in Sec. II by first converting it to an equation
which in essentlals is equivalent to the equation
for plane geometry.

(51) as follows.

To convert, first write Eq.

~

T(Nh% - Nh—!f) + OVN = VS, (58)

where T is the total effective outflow area, the

sum of the detailed outflow areas |u|A1+% and
Cam+%/w, which equals the total effective inflow
area, the sum of the inflow areas IulAi_& and

Cam_%/w. The equality is a consequence of Eq. (55).

Hence,

3
1

‘H|Ai+% + Cam+%/w

lulAi—k + Cam_k/w

|u|d + c o/w, (59)

where the last quality comes from the definitions

K=ha, +A,), (60)

and

n

a

oy + oy ). (61)

Comparing Eqs. (51) and (58), which are supposed to
be equivalent, leads to the following formulas for
the total outflow TNh+& and the total inflow TNh-%'
N, = N 62
™, I“lAi#gN:H&f*' (mM/W) s (62)
and

™y

Iu]Ai_liNi_si + (Co  ON e (63)

Thus ﬁh+% is a weighted average of the outflows

Ni+k and Nm+% with the effective outflow areas as

weights, and N represents a similar average for

h-l4

the inflow sides. In what follows, Nh+k and Nh—k

will have the meaning of weighted averages using A
and o as welghts.

Proceeding with the conversion,

TNy = TN MO, = N, (64)
where

N = (WA - N, (65)
likewise

Tﬁh—!z = T, - MOy - N ), (66)
with

™,y = IuIXNi_si + (Ca/w)Nm_%. (67)



Next, introducing and applying the following cross

difference relation

(Ni+% - Nm+k) - P(th% - Ni-k)’ (68)
Eq. (64) for 'I.'I"I\h_*_;1 becomes

Nt = My + PON - T . (69)
Therefore, on the basis of the relation in Eq. (68),
substituting Eq. (69) in Eq. (58), Eq. (51) is re-

duced to

Ty = Mg + (2= BY Oy = Ny
+ OVN = VS, (70)

In the normal case, P = 1, Eq. (51) has been re-
duced to the equation for the plane case with AT/V
playing the roll of |u[. On this basis the appar-

ent cell thickness u can be written

u = gV/T. (71)

If P ¥ 1, an extra boundary source (1 - P)So is in-

volved.
5 = T(Nh_;j - Ny - !ﬂlc(Nm_li - Ni_li). (72)

the sign of which cannot be predicted.
Proceeding with the solution, introducing the

difference relation
Nh+% - Nh—% = (L +P)(N - Nh—&)’ (73)

which, together with the relation in Eq. (68), im—
plies

N - N = (1 +P)XN - N (74)

1+ 1-35 i—k) *

and

left - Nm_;i = (1 + P)(N - Nm_;i), (75)

one finds upon substitution in Eq. (70) and solving
for N that

2PN,y + (1 - PN, + uS/o

N = T+P+u ’

(76)

which shows that N is positive for all allowed P,

0 £ P<1. N can also be written as

(1 +P) Nh—% + (1 - P)S° + us/o
1+P+au

N =

(1 +P) N, - 2PS + uS/o

= "1+ P+ u . an

Extrapolating for Nh+% and ﬁh+k’ one obtains

L+ P - PON_, + (L -P)S + (L +P)us/o
Nsg = 1+P +u

(78)

and

Nh+% = Nh+% + PSo

Q+p+ Pu)ﬁh_;’ - 2u N, + (1 + Pus/o

1+P+u ’
(79)

which can also be written as

R 1+P - Pu)uh_;i + (1L + P+ Pu)S_+ (1 + P)us/o

Nt = T+P+u

1+pP - Pu)Nh_;s + 2PuS_ + (1 + P)us/o

= 1+P+u (80)

In the normal case, for P = 1, Eqs. (76) and (79) re-

duce to
. 2Nh-} + uS/o , (81)
2+u
and
ﬁ ) (2 + u)Nh_% - 2u Nh-% + 2u S/o
htds 2+u
) 2 - u)Nh-k +2u S+ 2u s/o . (82)

' 2+u

If P values are actually used in the calculations,
P # 1, as happens in the Modified Source Limit Scheme
degcribed in Sec. II, then

P=1/u', u' >1,

and Eqs. (76) and (79) may be written




[ = ]
2Nh-% + (u 1)Nh-k + u'u S/U’
1+ u'+u'u

(83)

N =

and

' o - [
. . 1+ u + u)Nhtﬁ, ZUNh-% + (1 + u')u S/o .
ht 1+u'+u'u

(84)

Here, in the spherical case, it is necessary to com-

pare Nh+% to a lower or an upper limit Lh+4i in all

cases including the third MDS scheme because of the
presence of the (1 - P)So boundary source. This
source includes a factor C = Ai+éi - Ai-k’ which is

significant in size only near the origin. S, may
also be small because a difference between two

neighboring fluxes is involved. The limit Lh+%’

if a lower 1limit, equals S/0, zero, or %S/0, depend~
ing on the limiting method; and, if an upper limit,
Lh+k equals S/o, 2S/0, or %S/c, respectively, in

the three methods. In any case, if Nh+k reaches
beyond a limit, one sets

Ni‘*‘li = Nm+3§ = Lh_‘Jé’ (85)
and recomputes N from
N = (Nh-k_ Lh+k )Y/u + S/o. (86)

In the normal case of Nh+k staying within

bounds, the individual, or detailed, extrapolations
using Eqs. (74) and (75) are performed next. This
is done with P = 1 except in the Reduced Limit
method where P = 1/u' is used if u' > 1. Because
more than one extrapolation is calculated, it is
possible, though not very likely, that one of them
goes outside bounds. In general, if d is the di-~
mensionality of the cell, as many as @ — 1 of the
extrapolations can give undesirable results. Here
one is dealing with extrapolations at angles to
the principal flow. There is, therefore, very 1lit-
tle physics to use as a guide beyond insisting that
the output fluxes be positive, that is, setting
such fluxes to zero if one or more of them becomes
negative, The zero limit correction to the problem

of flux skewing 1is, however, quite simple. After

computing all the extrapolations each one is tested.

1f, for example, Ni+k is negative, one sets Ni+8 =0

after first computing a factor f.

£ = 87

= Mo/ (g, = Ny
Then all the remaining‘extrapolations are modified

according to

Ns+% + f(Nh+k - Ns+k) e Ns+%’ (88)

where s denotes any one of the subscripts. For this

example and geometry, s = m only. Clearly, for s =
i, Eq. (88) gives zero. This correction scheme con-
serves particles because the sum of the individual
corrections for each discovered negative outflow
equals zero.

The auxiliary equations derived from Eq. (51),
the balance and net flux equations, are of special
interest. They are obtained by multiplying the

terms of Eq. (51) by‘wm and 3w L , respectively,

then summing over the index m, obtaining two equa-
tions in terms of the scalar flux N and the current,

or net flux, I defined by

N, =%

i o mt ? (89)

and

I, = zmwmumNmi' (90)
By performing the first sum for the balance equation,
one finds

A

I, , + oW =Vs (91)

Aivy Ii+3§ I T )

noting that, in the summing, the terms in a vanish
due to cross cancellation.

The second sum for the net flux equation de-
pends on the diffusion condition, which is another
assumption, valid or nearly valid in many situations,
to the effect that N is given to sufficient accuracy

by the linear form

N = N + 3ul. (92)

From this, one derives in particular that



Nowte = Ny = 3(“1:&*1 - Mpa) L= 6w I, (93)
a result which will be used below.

Before substituting Eq. (92) into Eq. (51) and
performing the multiplications and summations, Eq.
(51) 1is rewritten as

“K(Nﬁ!g T Npy) O N )

+ (C/w)[?EE(NmHi =Ny - RO N )]

+ OVN = VS, (94)
where A and V may be written

Kmtsa, + A ) = Per b, 09
and

2 :
V= 4"A'%(ri+k * T Ti t ri—kz)' (96)

From the difference schemes [Eqs. (74) and
(75)] for small intervals, it follows that

Ny * Ny = Ny + N1 97)

so that Eq. (94) simplifies to

uK(Ni+li SN )+ (Ca/w) (N SRS W

+ QUN = VS, (98)

Therefore, for the net flux equation, making use of
Eqs. (93) and (98), one obtains

A g T ii—&) + oVI = 0. (99)

If all the above steps are done analytically
by using derivatives and integrations rather than
differences and numerical quadratures, one discov-
ers that Eq. (99) is not correct unless A = V/A.
This relation clearly holds for plane geometry, and
also, as seen in the next section, for cylindrical
geometry. It does not hold for spherical geometry
as seen when comparing Eqs. (95) and (96).

There are several remedies for the defect in
Bq. (98).

following replacements.

The simplest of these is based on the
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S/o + (AA/V - 1)N + S/o, (100)
which leave the balance equation unchanged and cor-

rect the net flux equation. By good fortune the cor-
rection to S/0 in Eq. (100) is positive. It has the
physical effect of increasing the scattering cross

section near the origin, especially in the cell next
to the origin. The total effect of the correction
decreases as the number of intervals in the system
increases. Table II gives some data for the size of
the correction near the origin in the case of equal
r intervals.

last column, is given by AA/V ~ 1 + 2/3(21-1)2,

The asymptotic behavior, shown in the

TABLE II
TABLE OF AA/V

i AA/V Approx. AA/V
1 1.5000 1.6667
2 1.0714 1.0741
3 1.0263 1.0267
4 1.0135 1.0136
5 1.0082 1.0082

A different, perhaps better method for dealing
with the defect in Eq. (99) has been developed by

Grant5

on the basis of truncation error analysis.
(Also, see Ref. 6.)

P = 1 in Eq. (75) for the Nm+k extrapolation, but

In essence that method sets

determines P in Eq. (74) for the other extrapolation
so that A in the net flux equation [Eq. (99)] becomes
V/4, which also resolves the problem. According to

this, 1 + P is found to be C/(Ai+k - V/A) for posi-

tive u, C/(V/A - Ai—k) for negative u. Grant's
method was not used here because it conflicts with
two aims in this report: to maintain equal weights
in the extrapolations and to hold P = 1 for all suf-
ficiently small cells.




IV, THE CYLINDRICAL CASE AND UNIT SPHERE QUADRATURE
The difference equation in the (r,u,£) cylin-

drical case is given by

MA o Ny = WA L NG+ G/ gy Ny -0y N ) o+ OVN = VS, (101)
which is formally identical to the spherical equa-
tion [Eq. (51)]. There are, however, some notable U and w = 0, also with
differences. First, for area and volume elements,
’ Gty = Oty = o =0, (110)
Ai = 2nri, (102)
which are needed for the initial flux extrapolation
c = Ai-% - Ai-k = 2TA, (103) in the Y direction, one for each £ level. The re-
maining regular points (wm # 0) are divided equally
V:L = n(ri#i2 - ri_gz) = ZW;A, (104) between the two octants, n(n + 2)/8 points on each,
one octant having negative and the other positive u.
where Associated with y is the direction cosine & and
the third cosine u satisfying
A=br= (rg, - ), (105)
N (111)
and
T = %(ri+% ¥ ri-k)° (106) For the sake of stable calculations with respect to
round-of f errors, the sequencing is always in the
Therefore, direction of increasing u for each & level. It is
also in the direction of decreasing r if u is nega-
c/V = 1/x. 107) tive, and increasing r if u is positive. The special
points are placed at m = m, = I, n+ 2, 2n + 1,...,
Because M- 2,
- _ The cylindrical @ coefficients obey the recur-~
A= *(Ai+k + Ai—ﬁ) = 21r (108) sion formula

in this geometry, it follows that AA/V = 1.0 and

that the replacements [Eq. (100)] have no effect

for cylinders. ’
Second, a £-level indicator £ is omitted in

Eq. (101), £ = 1,2,...,Mn, &2 < €2+1, where 2 is

attached to w, U, and a, as well as to the N quanti-

ties. Here n is the order of quadrature, n = 2,4,

... « The basic quadrature procedure is, however,

to put n -~ 22 + 3 quadrature points on level £,

where the levels span two octants on the surface of

the unit sphere, and to arrange the total of

n(n + 4)/4 points in a single sequence, m = 1,2,...,

M, where

M= n(n + 4)/4. (109)

Of the M points, !n are special points with negative

a

s T oty T T 12

that is, the same formula as for spheres [Eq. (55)],
except that they are generated separately for each

£ level starting with

o9 =0 =0 =0 (113)
m£+1 L 3 m,
Here, in the limit of w + w, = 0, one may write
(3
(@ ., -a )/w +-u . (114)
m2+4 m, 35 my my

The sequencing for the spherical equations is a
special case of the above with m = 1,2,...,M, and
M = n + 1, where w represents level weights, that is,

sums of point weights by level, rather than by point

11



weights., There is only one special point in this

case: wy = o, ul = -1.0, with a3/2 = ot.!i =0y = 0.

For cylindrical geometry, two sequencing pro-
cedures will be considered. 1In the first method,
proceed as described above using the following form-—

ula for the special u's.
(115)

In the second method, to obtain extrapolations that
are consistent with the spherical case (explained

below), use only one special point -- the same point
as for spheres. Thus, m = 1,2,...,M, where

M=n(+2)/4+1 (116)
with the first regular points for successive levels
located at m = 2, n + 2, n,...,M - 1.

For the first level, the first extrapolation in
u 18 done in the regular manner using the fluxes ob-
tained for the m = 1 point. For the succeeding
levels, the first extrapolation is done using the
result of the first extrapolation on the previous
level.

The second scheme is consistent with the scheme
for spheres in that it can readily be reduced to a
one-dimensional scheme. The reduction is immediaté
if all the y directions on a given U level are equal
and if the corresponding level weight is equated to
the sum of the point weights on that u level. Under
these circumstances, solutions to spherical, and
also infinite plane, problems would be independent
of the dimensionality of the quadrature used. In
specific cases, the u directions on a given u level
are generally almost equal and occasionally are
equal.

In practice one can let a root-mean-square re-—
lation hold between the direction cosine for a given
level and the individual direction cosines on that
level. If the point weights on a level are unequal,
one replaces an unweighted mean by a weighted mean.
The principal objective here is to preserve the con-
dition in Eq. (57), whether one expands a one-dimen-
sional set to two-dimensional use or reduces a two-
dimensional set to one-dimensional use.

The curvature coefficeint C  in Eq. (51) for
spheres, which goes with the angular difference

terms in that equation, may for a special value of

12

m, m = 8 omltting a factor approximately equal to
2/r, be written

Cs = (zus/“s)“s-g - (2u8/ws)zm - wmum ’ (117)

where s 18 the index of the smallest positive U, so

that as_% is the maximum o, and where the sum is
over those m for which Wy is negative. Analytically

Cs = 1} should hold, but generally the quadrature sets
used supply this value only in the limit of large n.
If, for example, Gauss Pn—l quadrature is used,

say for n = 4, 8, and 16, one finds that ZCs = 1,087,

1.023, and 1.006, respectively.

from the true value of 1.0 are regarded as rather

These departures
large. By using specially constructed quadratures,

such as ESn (discussed below), which assume that
(118)

that ig, the smallest positive y is the midpoint u
of the interval, the situation is considerably im-
proved.
finds ZCs = 1,032, 1.011, and 1.003, respectively.
In one instance, for a particular value of n, n = 4,
This

For ES, quadrature, n = 4, 8, and 16, one

the improvement can be readily demonstrated.
is the case of the extrapolation length Z s where
for n = 4 the formula z, is

(119)

zZ, =t Hy = 3o, .

Using this for Pn-l and ESn quadratures, each of

which has two positive values of U for n = 4 (u1 and
uz), one finds z = 0.6940 and 0,7061, respectively,

compared to the exact value of 0.710446.
In the cylindrical case, assuming Eq. (118),
one can establish that

2
- - ~ 120
c, 2 - Wy Wy R WM /us (120)

should hold for each level. The first teat of the
quadrature is that the sum of 2Cs over the levels
Good

agreement is not expected for low n here because the

should approach unity as n approaches infinity.

right~hand side of Eq. (120) is only approximate.
Performing the test using data from ESn, n=2,4,
8, and 16, one finds 0.5774, 0.8889, 0.9655, and



0.9924, respectively, and for the sequence n = 6,
12, and 24, one finds 0.9420, 0.9849, and 0.9978.
All of which seems satisfactory.

The second test of the two-dimensional quadra-
ture is to compute and examine the differences
(multiplied by 2) between the left-hand and right- -
hand sides of Eq. (120). Computing these for each
level by using ESn, one obtains, for n = 4, the
values of 0.032 and 0.111, and for n = 8 the values
0.006, 0.009, 0.011, and 0.019.

ever, one does not obtain as good agreement. For

For higher n, how-

ESn with n = 16, for example, the differences are
0.011, 0.019, -0.004, -0.015, ~0.003, -0.001, 0.001,
and 0.003. These seem too large, perhaps by a fac-~
tor of 2 to 4, The results are not good for EQn
either, a more carefully constructed quadrature set.
In this case, for n = 16, the differences are 0.034,
0.020, 0.000, -0.008, -0.008, ~0.032, 0.001, and
0.003. For tables of EQn’ see Ref. 7.

The second test may be a more sensitive test
because it involves a division by u's, the smallest
Y magnitude, in the subtraction term. Nevertheless,
one should not exclude the possibility that in some
cylindrical problems the angular flux may fail to
converge to the right limit as n and the number of
r intervals will increase. The improper convergence
may be limited to a region near the center of the
cylinder where the effect of the geometry curvature
is large. For the scalar flux, averages of fluxes
over large regions, eigenvalues of the problem,
etc., proper convergence is more likely since there
will be a tendency for errors to cancel. The remedy
for the defect in quadrature hinted at above is, of
course, to construct better quadrature sets, perhaps
based on conditions such as Eq. (120) with equality
sign for all but a few of the highest £ levels.

The remainder of this section will describe
the ESn quadrature set, a basic easily constructed
one-dimensional set which then 1is expanded to a two-
dimensional and “triangular" set, for arbitrary n.
It is based on the following assumptions.

(a) Equal point weights, normalized to unity

on the octant, given by

W = p = 8/n(n + 2), (121)
m=1,2,.,..,M, with
M = n(n + 2)/8, (122)

and U, N, and § subject to

2, 2, .2

= 1.0 (123)

and positive on the principal octant.
(b) Triangular arrangement of points on the

surface of the octant, specified by (um, Ny Em)

triplets, on 4n levels, n = 2, 4,..., with n - L+ 1
points on level & for a total of M points, M given
by Eq. (122).

(c) Permutation symmetry, so that if (um,nms

Em) is a point in the set so are all points obtained
by the possible permutations of the components Ues

Nys and Em which may number 1, 3, or 6 depending on

how many, i1f any, of the components are equal.

(d) Extension to 2, 4, or 8 octants, depending
on the requirements of the problem, by reflection of
the principal M points into the other octants with
the appropriate remormalization of weights and sigg
changes of the components.

The one-dimensional sets are constructed first.
Here the level weights w, are given by

Wy = (%n - 2 + L)p, (124)

where p = 1/M, the lower u-interval boundaries are

given by
Moy ™ 1.0 - (n - 2 + (G - 2 + 2)p, (125)

and the midpoint u's by

W, = 1.0 - 40m - 2+ %, (126)
From the above one can deduce

£, wy Wy =k (127)
and, after considerably more algebra,

I, w, w2 = (1 - p/4)/3. (128)

The one-~dimensional ESn sets are based on Eq.
(124) for level weights and on
Mg = Rbg o+ 4y (129)

for level cosines where R is determined so that Eq.

(57) is satisfied. A formula for R can be derived.
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Table III gives computed values for R for n = 4, 6,
ooy 32, ’

TABLE III
VALUES OF THE SCALE FACTOR R VERSUS n

n R n R

4 0.0728757 20 0.0024709
6 0.0287804 22 0.0020428
8 0.0157065 24 0.0017172
10 0.0099458 26 0.0014638
12 0.0068776 28 0.0012627
14 0.0050444 30 0.0011004
16 0.0038600 32 0.0009675
18 0.0030498

By construction, the second moment ﬁé is exact
and equal to 1/3. The fourth moment MA’ which should
equal 1/5, converges rather rapidly to that value,
The higher

moments, say up to ﬁ;, converge at about the same

the errors decreasing about as 0.135/n2.

rate.

The two-dimensional ESn gets are derived from
the one-dimensional set making use of the general
Esn asgumptions given above and from the following
specific rules.

(a) For each point in the triangular arrange-
ment, the formula

2 2

2
w + 0 + Ez = 1.0 (130)

should be satisfied, from which Eq. (57) follows as
a corollary.

(b) The root-mean-square relation between ul
and individual u's on a given level should hold.
This relation is automatically satisfied for the
highest two levels, hence for all levels for n = 2
and 4.

(c) The maximum number of unequal u's on level
2 to be £ + 1 with ul,k+1 = ul,k’ k=2+1, L+ 2,

... until the symmetry requirements overrule.
(d) Additional equating of Wu's on specific

levels starting with, and going downward from, level
Jn - 2 to the extent necessary to determine all

ints. Thus £ =12, 14 d 16, =
points us for n , s an u&n-Z,Z
u&n—Z,l’ for n = 16 also u&n—3,1'

14

Table IV gives the ESn quadrature sets. The
values of Moo k fixed and & varying, are read diag-
onally downward. For tables and discussion of other

quadrature sets, see Refs. 7 and 8.
V. TWO~ AND THREE-RECTANGULAR VARIABLES

The transport difference equation for plane (x,

y,2) geometry is written as follows.

RA g = N * B = Ny

+ Ec(Nk+k - Nk—k) + OVN = VS, (131)
where
A = AyAz, (132)
B = AxAz, (133)
C = AxAy, (134)
and
V = AxAyAz. (135)

If the third difference represents time variation,
Az is replaced by At and § by unit.

velocity v = v_ enters where v is discrete valued

The neutron

and depends on the velocity group. In this case of

time-~dependent (x,y) geometry, one can also write

A = My, (136)

B = Ax, (137)

C = V/vAt, (138)
and

V = AxAy. (139)

For stationary (x,y) geometry, the time-dependent or
v = @ case, C = 0,

Here, as explained in Sec. III, Ni+k is an ab-
bfeviation for N denoting the number of
g, 143, 1,k g
particles of velocity v8 with stream, per second per
unit area, in the direction (um, My Em) at the cell

surface specified by (1 + 3%, j, k).
uAN:L_Hi represents the total inflow across that cell

Therefore,

surface. This and other terms with a cell edge
(half~integer) subscript stand for surface average

of flux, whereas OVN and VS represent volume averages.



1

1.0000000
0.5773503
0.5773503

0.6666667
0.3333333
0.3333333
0.3333333

0. 5000000
0.2500000
0.2399760
0.2689295
0.2399760

0.4000000
0.2000000
0.1876726
0.2116104
0.2116104
0.1876726

0.3333333
0.1666667
0.1541474
0.1745146
0.1745146
0.1745146
0.1541474

0.2857143
0.1428751
0.1308070
0.1485160
0.1485160
0.1485160
0.1485160
0.1308070

oo

"0.3333333

0.8819171

0.8819171

0.3333333
0.6810569

0.6810569
0.6810569

0. 3000000
0.5562826

0.5454437
0.5773503
0.5454437

0.2666667
0.4699819

0.4523038
0.4870187
0.4870187
0.4523038

0.2380952
0.4067269

0.3855474
0.4329602
0.3936131
0.4329602
0.3855474

TABLE 1V

ES, QUADRATURE SETS

o

0.1666667

0.9406503

0.9406503

0.2000000
0.8109946

0.8109946
0.8109946

0.2000000
0.7059675

0.6962559
0.7250004
0.6962559

0.1904762
0.6226502

0.5940136
0.6500264
0.6500264
0.5940136

4

0.1000000
0.9641359

0.9641359

0.1333333
0.8746233

0.8746233
0.8746233

0.1428571
0.7906269

0.7906269
0.7906269
0.7906269

3

0.0666667
0.9759494

0.9759494

0.0952381
0.9106570

0.9106570
0.9106570

Jon

0.0476191
0.9827406

0.9827406

{~

|oo
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TABLE IV (cont)

L 1 2 3 4 5 6 7 8
n=14
w, 0.2500000 . 0.2142857  0.1785714  0.1428571  0.1071429  0.0714286  0.0357143
uy 0.1250000  0.3584040  0.5559135  0.7176286  0.8432492  0.9330754  0.9870071
Mgy 0.1136154
iy, 0.1292734  0-3336467 4 5517463
Mgs 0.1292734  0-3800860 4 559695  0.7001734 4 oi3492
Mag 0.1292736 03981007 573503  0-7335191 g gi5p4p  0:9330754 4 ggg0071
by 0.1292734  0-358L007 oo 0.7335191 oo oo 0.9330754
Hog 0.1292734  0-3800860 517463  0-7011734
My 0.1136154  0:3336467
n=16
w,  0.2222222  0.1944444  0.1666667  0.1388889  0.1111111  0.0833333  0.0555556  0.0277778
uy 0.1111111  0.3203022  0.5016083  0.6550294  0.7805655  0.8782166  0.9479828  0.9898638
My 0.1004229
Uy, 0.1144522  0-2970343 /1 ci366s
Mgs 0.1144522 03381830 gug140  0.6145064 4 sgnsecs
Mg, 0.1144s22  0-3229862 4 549941,  0.6692085 ) Lgnsess 08782166 g/09g08 N
My 0.1144522  0-3229862 4 545091, 07031370 sgn5e55  0.8782166 g o4p040g O
Mog 0.1144522  0-3229862 ) 541609 0-6692085 so5cess 08782166
Mg, 0.1144522 03381830, 0iages 06145064
Meg 0.1004229  0-2970343

The total outflow TNh+8 and inflow TNh-& are u = gV/T. (144)

defined by
Equation (131) may be solved by assuming the
TNh+% - lulANi+li + |nlBNj+% + IEICNk+%o (140) difference relation
- - + P)(N - N . 145
™), = |u]ANi_$i + I"IBNJ-I;, + IEICNk-ls’ (141) Nt = Moy = @ ¢ heig) (145)
Substituting this in Eq. (143) and solving for N,
with one finds
T = ula+ [u]B + [g]c. (142)

Equations (140) and (141) refer to the case when all
angular components are positive. The indices depend
naturally on the signs of W, n, and £, that is, on
the general direction of numerical evaluation.
Equatioﬁ (131) can now be written

Ty = Nyoy) + OWN = Vs, (143)
which resembles Eq. (1) with |u| set to TAx/V, and
u, the apparent cell thickness, given by

16

1+ P)Nh_;’ + u S/o
= ’
N 14+P+u (146)
and using this N in Eq. (145), one finds
(L+P ~Pu) N + (1 + P) u S/o
N, = e (147)
hidg 1+P+u ’

where u S/0 is replaced by VS/T in both equations if
0 = 0. In the normal, straight diamond case, with

1+ P = 2, the above reduces to



~ 2Nh—% + u S/o

N = >t o ’ (148)

and

Q2-w N, +2us/o

Nh+% = 2 +u

(149)

For discussions of various other schemes, see Refs.
9 and 10,

Assuming that the Reduced Source Limit scheme
is followed (the third scheme discussed in Sec. II),
the next step is to calculate u', the effective cell
thickness, by using

u'=u(N' - S/0)/N", (150)

where N' is the value of N obtained from Eq. (148).
If u<1l, or if u > 1 with u' £ 1, the normal re-
sult from Eq. (148) is kept and the extrapolation is
(149). 1If u' > 1, one takes P = 1/u',
recomputes N from Eq. (146) and goes to Eq. (147)

for Nh+k’

Section II showed that if Nh+% < N, then Nh+%

is limited from below by %5/0, regardless of the

done using Eq.

size of u'. A test is necessary, however, for the

3
upper limit if Nh+% > N. Here, if Nh+k > ES/O’ one
sets
N = 35/0 151
nty ~ 25/ (151)
and recomputes N from
N = Nh-k/u + (1 - 3/2u)8/c. (152)

Proceeding in conventional fashion, one now

introduces the formulas for computing Ni+%’ Nj+k’

and Nk+%’ the detailed output fluxes as follows.
Ni+% = (1 + P)N - PNi—&’ (153)
Nj+% = (1 + P)N - PNj_%, (154)
and
Nk+% = (1 + P)N - PNk—%’ (155)

which are consistent with Eq. (145). To obtain that

equation one forms a linear combination of the above
using, for example, the weight factors |u|A/T, |n|B/T,
and |E|C/T.

After calculating the extrapolations, they are
tested and corrected for skewing following the steps
described in Sec. III.

1f, for example, N is neg-

1+

g~ 0 after first computing a factor f,

ative, set Ni

N (156)

= = N/ Mgy = Ny

The set of extrapolations is then modified by

N y t f(Nh -N )N (i57)

s+ st s+is’

where s = j and k. For 8 = 1, Eq. (157) yields a

zero result. The above test, and related corrections
if such are required, are then repeated for Nj+% and
Nk+%'

Next, two methods for alleviating ray effects
are described. Other methods were examined earlier
(see Refs. 11 and 12). In the first method, smooth-
ing is achieved by simplifying the extrapolationms.
The means is the '"sloping step' method justified on
the basis of solution along pseudocharacteristic
lines. The lower differential accuracy of this method
may be offset by going to a higher n and by some in-
crease in the count of cells. In the second method
("input flaring"), one follows the general solution
method described above after first smoothing out the
input flux as detailed below.

To give some justification to the first method,
note that the partial differential equation corre-

sponding to Eq. (131), given by

3 3
M K N(x, Y le. nm) +n a_y'N(x) Yy, um’ nm)

3
+ £ E" N(x, b A) um’ nm)

+ oN(x, Yy, um’ nm) = S(x’y)) (158)
is actually a transformation of a one-dimensional

equation. The transformation is defined by

3 3 ) 3

Fg - U3t 5;'+ &35 (159)

k4

and the result is that Eq. (158) is equivalent to
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2 N(s) + oN(s) = S(s),

s (160)

where s is measured along the path determined by

(um, Ny Em) for each direction in the set. The

solution of Eq. (143), the difference equation cor-.
responding to Eq. (160), obtained above in terms of

N and Nh+&’ is clearly a one-dimensional result con—

sistent with Eq. (160).

The change of variables from Eq. (160) to Eq.
(158), replacing one variable by three, is a con-
venlent but otherwise rather arbitrary transforma-
tion which does not add any physics to the problem.
One may therefore argue that the presence of several
inputs to a cell is simply the manifestation of a
system of mesh cells not lined up with the direc-
tions of flow and that, therefore, the calculated
aver%ge output flux Nh+k should represent all the

~extrapolations. According to this, one sets

N = N - =

i ™ Ny ™ N = Moo (161)
which is a Sloping Step scheme applied to all the
coordinate directions. It differs from the ordinary

step scheme in that Nh+}i # N. Using the relations

above [Eq. (161)]

and also exercises a strong smoothing action on the

eliminates the skewing problem

fluxes since several, usually unequal, inputs are
This method, which

is essentially a step function method as far as

made to produce equal outputs.

variation of flux normal to the discrete directions
18 concerned, probably benefits from having more
than the normal count of mesh cells. In practice,
the larger count is generally supplied because it
is normally required for an adequate description of
the problem. It is needed for placing sources and
internal boundaries, for getting detail in the out-
put, etc.

The second method for smoothing out ray effects
is more elaborate than the first; it is based on
making exchanges of particles between the detailed
input beams entering a cell; and it is done before
the regular calculation described at the beginning
of this section. It represents a means for making
a distribution of parallel beams simulate a distri-
bution of conical beams. The method requires that

certaln data input be furnished specifying the

18

conical spread for each discrete ray, that is, a
spread for each direction (um, Nos Em).

The input flaring method, as it may be called,
is based on the observation that the inflow on one

side of the cell [say, uAyN:L_;{t on the left side of

an (x,y) cell], which on the assumption that

z |ulay /In]ax < 1, (162)

w
u

is directed toward the adjoining side, perhaps also
should, to some extent because of flaring, be direct-
ed toward the opposite side. Here the extent would
depend on the flare in the rays entering the cell and
on how close R is to unity. Likewise some fraction

of nAxNj_%,

should perhaps be diverted to exit at the top rather

the input at the bottom of the cell,

than on the right.

The partial exchanges between the cell surfaces
must conserve the number of particles. For (x,y)
geometry, for example, write

uly Ni—k(l - F) + nAx Nj-kF + pAy Ni—k’ (163)

and

+ -7 +na .
My Ny, F + nbdx Nj_%(l F) + nbx Nﬂ—k (164)
The sum of these exchange equations produces an iden-
tity.
transferred to the (i,j-%) side.

Another condition on the exchange is that it

Here F represents the fraction of particles

should have no effect if Ni-k = Nj—%' Therefore,

Ay (1l - F) + ndxF = phy, (165)
which gives
UAyF = nAxF. (166)

It remains, therefore, to produce a formula for F.
In (x,y) geometry there is only one exchange; in
(x,y,2) geometry this count goes to three, and for
four variables the count goes to six. Each exchange
is like the one outlined above and is defined by
equations similar to Eqs. (163) through (166).

A few formulas are derived below for F = F(R)

in the simple case of n = 2 and (x,y) geometry. For




flow in the principal octant in the single directionm,
¥ =Ny = ¥3/3. 1In this instance the gpread of the
beam represented by (V3/3, V3/3, ¥3/3) is over an
entire octant of solid angle.

Assuming that the flux on the left face of the
cell is uniformly equal to Ni—k and that R £ 1, the
fraction F(R) of particles reaching for the opposite
side is given by

After computating F, one finds F from F = RF. If

R > 1, replace R as follows.

1

FR) = (2/m) f arctan(Rr)dr = (2/7)[arctan(R) - (1/2R) 2a(l + R%)]
0

1/R + R, (174)

and, by using the new R, compute
F=@R-y)m, (175)
(167)

from which one can calculate F(1) = 0.279, F(0.8) =

0,233, F(2/3) = 0.199, and F(1/2) = 0.153. Asymp-
totically, for R going to zero,
F(R) ~ R/T (168)

holds. Using a crude but useful approximation to
the subtended angle, the area of some part of the
output surface divided by the total area, one ob-

tains

setting it to zero 1f negative, and finally find F
from F = RF.
the coefficient of 1/m in the formulas for F and.f,

In all of this, one can assume that

as well as the Y quantities, can be manipulated to
a limited extent if this is a way to enhance the
smoothing.

As shown, the above can be extended to (x,y,z)
and other geometries. On the (x,y,z) case one has

three exchanges with separate R's, Rl = pAy/nbx,

' 1
F(R) ‘-‘-f Rrdr/ (1l + Rr)

0

1 - (1/R) (1 + R),

(169)

which yields F(1) = 0.307, F(0.8)
0.234, and F(1/2) = 0.189.

0.265, F(2/3) =
F(R) from Eq. (167) is,
however, very well approximated by
F(R) = R/w = 0.3183R. (170)
On the basis of the above and a few other in-
vestigations, the following preliminary estimate for
F in the general case is proposed.

F=(R-vy)/m, (171)

where F is set to zero if negative, and where vy = 0
for the example above and otherwise equal to unity
minus the given spread, 0 £ y £ 1. 1In the ESn

quadrature with the triangular arrangement of points

and level weights

W, = 8CGm - £ + 1)/n(n + 2), (172)
one can let Yy be given by
Yy=1-1/CGs - 2+ 1). (173)

R2 = uAz/EAx, and R3 = nAz/EAy. Also, on the basis

of the ESn quadrature, one can let Y be given by

Y =1/2n (176)

for all points. In (x,y,z) one probably has to do
something special if a beam interacts with three
cell faces simultaneously.

Splitting mesh cells in rectangular geometries
is regarded as a method for handling complicated
geometrical arrangements of materials. The present
discussion will be confined to (x,y) geometry and to
splitting by a single straight diagonal line. How-
ever, ideas also apply to (x,y,z) geometry. It is
assumed that up to two inputs may be divided and
that up to two split outputs may be produced by the
calculation. It is also assumed, of course, that
the two parts of the cell can have different materi-
als and that two values of N are generated, one for
each part. Finally, it is assumed that, in general,
relatively few cells are split, say from 5 to 15%

of the total.
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The diagonals may be defined by two numbers,
fl and £2. The splits may be divided into eight
cases depending on the sign and magnitude of these
parameters. A negative £, defines a point on the
(L - %,3) side, a positive f, defines a point on the
(1,3-%) side, a negative f2 defines a point on the
(i + %,3) side, and a positive f2 defines a point on
the (1,3+%) side.

positive £, and f2 will be discussed with incident

Here, to illustrate, the case of

particles from below and from the left.
tion is shown in Fig. 1.

The situa-

The important area elements in the illustration
are given by the following.

(a,c) = (B,D) = Ax, Q77)

(A,B) = (C,D) = Ay, (178)

(A,E) = fle, (179)

(B,F) = szx, (180)
and the volume of parts I and II are given by

Vo= M(E) + )V, (181)
and

V.=V -V. (182)

II I

The figure indicates a flow from left to right across
the diagonal (E,F).

hence also the output area, is given by

The total effective input area,

AI = YAy + Fl nix, (183)

(I

Z
L S
A /E c .
Fig. 1. Schematic diagram of split (x,y) mesh cell.
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where the terms give the two partial areas. Looking
at AI as the sum of effective output areas, one
writes

(184)

AI = fznAx + (AI - fznAx).

Therefore, if AI - fznAx is positive, the flow is

from left to right, otherwise it is the reverse.
The calculations must first be done for the part
which transmits particles to the other part.
Because of splitting a single cell into two,
one can expect the accuracy of the calculation to
increase. This may be offset to some degree because
cell splitting implies a material discontinuity.
Turning to the calculation, it is easy to deter-

mine N and Nh+¥ for the two parts of the cell given

the inputs, but somewhat cumbersome to determine the
extrapolations by the detailed (x,y) method, includ-
ing smoothing the inputs to control ray effects, and
correcting for skewing by Egqs. (156) and (157).

The easiest method for the ;plit cell is, of

course, to determine N and Nh+% in the normal manner,

but to use the sloping step scheme for the extra-
polations, a scheme which also serves to mitigate

ray effects and to eliminate skewing problems.
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